Основы минералогии гипергенеза

Биокосные системы принадлежат к числу открытых систем, активно обменивающихся с внешней средой массой и энергией. Равновесное состояние такой системы фактически означает ее гибель. В функционирующих же открытых системах равновесие носит только стационарный характер, и процессы динамического взаимодействия связаны с направленным изменением прежде всего концентрации вещества в субстрате. Из этого следует, что энергетические превращения биокосной системы следует характеризовать не только соотношением энергетических уровней исходных и результирующих веществ, включая и "живое вещество", но и скоростью трансформации вещества и энергии в единицу времени, т.е. кинетическими параметрами (Рубин, 1984).

Реакции в механизме биокосного взаимодействия, являясь ферментативными, характеризуются постоянным изменением состояния ферментов из занятого (E1) в свободное (E0) по кинетической константе (k). В результате совершается функционально важный для жизнеобеспечения распад фермент-субстратного комплекса с образованием из субстрата S продукта p, что выражает зависимость

Зависимость скорости ферментативной реакции V от концентрации субстрата S и содержания ферментов в единице объема E описывает известное фундаментальное для биокатализа уравнение Михаэлиса-Ментен , которое при закономерной замене произведения k2E на максимальную скорость биокатализа VM упрощается . Кинетическая константа kM (константа Михаэлиса) в этом уравнении определяется экспериментально из графика V-S с учетом накопления продуктов распада субстрата во времени или путем графического дифференцирования кинетических кривых изменения концентрации субстрата.

С помощью уравнения Михаэлиса-Ментен можно решать различные практические вопросы в биогеотехнологии - определение кинетических параметров процессов выщелачивания минерального субстрата (руд), установления степени ингибирования реакций для продуктов ферментативного окисления минерального субстрата (Панин и др., 1985).

2. Один из сложнейших вопросов в теории биокосных взаимодействий - проблема устойчивости минерального субстрата и способы ее выражения.

Теоретически, с точки зрения классической термодинамики, устойчивость минерала как способность противостоять внешнему воздействию может быть описана свободной энергией формирования его кристаллической структуры и оценена с помощью изменения известных термодинамических потенциалов реакций взаимодействия системы. Однако следует заметить, что термодинамически выгодный процесс, осуществляющийся даже в равновесной системе, далеко не всегда может привести к ожидаемому результату, а теоретически стабильная в данных условиях фаза может в действительности оказаться невозможной. Отклонения такого рода связаны с кинетическими (временными) и динамическими (пространственными) условиями протекания реакций, например, с невозможностью преодолеть активационный барьер, способный полностью их заблокировать. Подобные случаи на примере с халькопиритом в свое время уже рассматривались (Яхонтова и др., 1978).

В энергетике неравновесной системы минерал-микроорганизм отмеченные условия, способные изменить характер и результат реакций, часто оказываются доминирующими. В коррекции термодинамических критериев устойчивости активно участвуют конституционные (топологические), к тому же обладающие переменной геологической спецификой особенности минерала, связанные с зонным строением кристаллов, с блочностью и фрактальностью минерального субстрата, не говоря уже о варьирующей ферментативной регулировке кинетики биодеструкции с существенным изменением активационного барьера и соответственно энергетического дизайна реакций. Полный учет отмеченных сторон взаимодействия - чрезвычайно сложная и пока, видимо, лишь намечаемая для решения задача. На практике, путем эксперимента с относительно простыми системами, могут быть получены полезные результаты, корректирующие теоретические расчеты. Представляется бесспорным, что устойчивость минерала в биокосном взаимодействии не может быть однозначно зафиксирована некоторыми константными величинами.

Что касается термодинамической функции устойчивости минерала, то, по-видимому, некоторую определенность можно получить, учитывая энергию кристаллической решетки в ее адекватном выражении через величину энергии атомизации как энергии сцепления атомов в кристалле (Урусов, 1975). К тому же в настоящее время появилась возможность использования расчетной, но в большей мере сопоставимой для различных субстратов удельной энергии атомизации, отнесенной к единице массы - Еm, кДж/г (Мамыров, 1989, 1991) и позволяющей ранжировать минералы в энергетические ряды виртуальной устойчивости.

Перейти на страницу: 1 2 3 4 5 6 7 8

Еще статьи

Социально-экономическое развитие Украины
Украина – южный сосед Беларуси, с которым у нашей страны тесные культурные и экономические связи. Как и Беларусь, Украина пережила серьезный кризис после развала СССР с последующей коренной политической и экономической перестройкой. Примером структурных сдвигов в экономике может служить резкое ...