Новейшая сдвиговая тектоника осадочных бассейнов тектонофизический и флюидодинамический аспекты (в связи с нефтегазоносностью)

Автореферат диссертации на соискание ученой степени доктора геолого-минералогических наук

Структурно-кинематические парагенезы и модели зон сдвигания Общепринятые представления о господстве в земной коре условий сжатия или растяжения в комбинации со сдвигом противопоставляются друг другу и рассматриваются в контексте различных геодинамических условий структурообразования. Крайнюю форму противопоставления условий структурообразования мы находим в классификации режимов транспрессии и транстенсии при формировании сдвигов. В работе показаны несоответствия кинематики <цветковых моделей> транспрессии и транстенсии реальным трехмерным моделям зон сдвигания. В связи с чем существующие представления о напряженно-деформированном состоянии земной коры и структурных парагенезах зон сдвигания, восходящие к временам плоского (двухмерного) геологического мышления, являются неполными и требуют очевидного пересмотра. Основной тезис, постулируемый в работе, сводится к утверждению одновременности проявления на этапах структурообразования объемного неравномерно-напряженного состояния, запечатленного в трех типах деформаций неразделенной пространством геосреды (сжатие-растяжение-сдвиг) во взаимно ортогональных сечениях структур.

Кинематические несоответствия цветковых структур

. Изучение смещений поверхности, связанных с крупными землетрясениями в Новой Зеландии, Японии, Калифорнии привело к созданию учения о разломах со смещением по простиранию (A.Sylvester, 1988). Эволюция Вегенеровской концепции дрейфа континентов в теорию мобилизма во многом обязана учению о трансформных разломах (J.Wilson, 1970), обосновавшему возможность масштабных перемещений литосферных плит. Классификация сдвигов (N.Woodcock, 1986) их геометрические, кинематические и динамические характеристики были оформлены на основе изучения горизонтальных сдвигов в обнажениях складчатых поясов. Как отмечал сам A.Sylvester, многие концепции и вопросы, касающиеся сдвигов, выведены из результатов исследований разлома San Andreas.

Главное ограничение, накладываемое на результаты этих исследований, состоит в том, что изучались препарированные эрозией разрезы, демонстрирующие отдельные фрагменты двумерных структурных парагенезов зон сдвигания. Эти ранние модели не могли учесть все сложные связи складчато-разрывных структур в их объемном взаимоотношении. В соответствии с этим A.Sylvester (1988) формулирует несколько фундаментальных вопросов, которые остаются малопонятными, включая природу образования кулисных складок и их связи с процессом образования сдвигов.

Нами при рассмотрении моделей <цветковых структур> по M.Naylor at al. (1986), A.Sylvester (1988) и др. обнаружены явные несоответствия кинематическим условиям строения природных сдвиговых зон, равно как несоответствия между моделями разных авторов и моделями одного автора в разные годы (рис.3.1). Приведем наиболее очевидные несоответствия (<кинематические ребусы>) из встреченных нами графических иллюстраций <цветковых структур> зон сдвигания и их связи с процессом образования сдвигов:

1) неверная кинематика сдвигов (на рис.3.1-1, 3.1-2 и рис.3.1-5 правые сдвиги показаны как левые; на рис.3.1-4 кинематика уже правая);

2) кулисы имеющие <винтообразные> плоскости пересекают ось сдвига без разрыва сплошности кулис (в природе кулисы одного крыла структуры не пересекают осевую поверхность и не переходят в соседний блок);

3) при встречном смещении смежных блоков кулисы скользят по плоскости разрыва как по рельсам и скручиваются (не разрываются и не смещаются);

4) для отдельной кулисы углы падения изменяются от нуля (относительно вертикали) в центре кулис (линия пересечения с осью сдвига) до максимальных величин на окончаниях кулис (в природе нулевому углу падения плоскости кулис отвечает линия выклинивания кулис над вертикальной проекцией плоскости сдвига);

5) в <цветковых моделях> кулисы не выклиниваются в шовной зоне сдвига;

6) несоответствие кинематики моделей A.Sylvester (левый сдвиг) и K.Kwolek (правый сдвиг) при их морфологической идентичности;

7) наличие антиформ внутри цветка транстенсии и синформ внутри цветка транспрессии, в то время как для цветковых структур характерны обратные соотношения.

Перейти на страницу: 1 2 3 4 5 6

Еще статьи

Энергетические ресурсы мирового океана
Проблема обеспечения электрической энергией многих отраслей мирового хозяйства, постоянно растущих потребностей более чем пятимиллиардного населения Земли становится сейчас все более насущной. Основу современной мировой энергетики составляют тепло- и гидроэлектростанции. Одн ...